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Abstract. A stabilized finite-element method for the two-dimensional stationary incompressible Navier-Stokes
equations is investigated in this work. A macroelement condition is introduced for constructing the local sta-
bilized formulation of the stationary Navier-Stokes equations. By satisfying this condition, the stability of the
Q1 − P0 quadrilateral element and the P1 − P0 triangular element are established. Moreover, the well-posedness
and the optimal error estimate of the stabilized finite-element method for the stationary Navier-Stokes equations
are obtained. Finally, some numerical tests to confirm the theoretical results of the stabilized finite-element method
are provided.
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1. Introduction

The development of appropriate finite-element methods is a key component in the search
for efficient techniques for solving the incompressible Navier-Stokes problem. By use of a
primitive-variable formulation, the importance of ensuring the compatibility of the approxi-
mations for the velocity and the pressure by satisfying the so-called inf-sup condition is widely
understood. It is also well known that the simplest conforming low-order elements like the
P1 −P0 (linear velocity, constant pressure) triangular element and Q1 −P0 (bilinear velocity,
constant pressure) quadrilateral element are not stable.

During the last two decades there has been a rapid development in practical stabiliza-
tion techniques for the P1 −P0 element and the Q1 −P0 element for solving the Stokes prob-
lem. For this purpose a local “macroelement condition” and some energy methods have been
used. The use of such a macroelement condition as a means of verifying the (Babuška-Brezzi)
inf-sup condition is a standard technique (see, for example, [1, Chapter II]); the basic idea
was first introduced by Boland and Nicolaides [2], and independently by Stenberg [3]. The
stabilized mixed finite-element approximation under consideration is based on a combination
of the standard variational formulation of the Stokes problem and a bilinear form includ-
ing a jump operator in the pressure. The discrete velocity uh and the discrete pressure ph are
defined on finite-element subspaces Xh and Mh, related to conforming low-order elements like
the P1 − P0 triangular element, or the Q1 − P0 quadrilateral element, which do not possess
the properties required by the inf-sup condition. Recently, Kechkar and Silvester [4,5], Kay
and Silvester [6], Norburn and Silvester [7] and Silvester and Wathen [8] pursued work which
laid the foundations of the mathematical analysis and numerics of locally stabilized mixed
finite-element methods for the Stokes problem.
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The aim of this paper is to extend the work of Braess [9], Kechkar and Silvester [4,5],
Kay and Silvester [6], Norburn and Silvester [7] and Pitkäranta and Saarinen [10] to the
case of the stabilized finite-element method for solving the stationary Navier-Stokes equa-
tions. A macroelement condition is introduced for constructing the locally stabilized formu-
lation of the stationary Navier-Stokes equations. By satisfying this condition, the stability of
the Q1 −P0 quadrilateral element and the P1 −P0 triangular element are established. More-
over, we obtain the well-posedness and the optimal error estimate of the stabilized finite-ele-
ment method for the stationary Navier-Stokes equations. Finally, we provide some numerical
tests to confirm the efficiency of the stabilized finite-element method.

The outline of the paper is as follows. In the next section we introduce the mathemat-
ical setting of the stationary Navier-Stokes equations. In Section 3 we recall the notion of
global and local stabilization of the Q1 −P0 quadrilateral element and the P1 −P0 triangular
element based on the macroelement condition and prove the well-posedness of the stabilized
finite-element method for the stationary Navier-Stokes equations. The optimal error estimate
of the stabilized finite-element method is introduced in Section 4. Some numerical results
are presented in Section 5, which show that the lowest-order locally stabilized finite-element
method is efficient. We draw some conclusions in Section 6.

2. Functional setting of the Navier-Stokes problem

Let � be a bounded domain in R2 assumed to have a Lipschitz continuous boundary ∂� and
to satisfy a further condition stated in (A1) below. We consider the stationary Navier-Stokes
equations

{−ν�u+ (u ·∇)u+∇p =f, divu=0 x ∈�;
u|∂� =0,

(2.1)

where u= (u1(x), u2(x)) represents the velocity vector, p=p(x) the pressure, f =f (x) the pre-
scribed body force, and ν >0 the viscosity.

For the mathematical setting of problem (2.1), we introduce the following Hilbert spaces

X =H 1
0 (�)2, Y =L2(�)2, M =L2

0(�)=
{
q ∈L2(�) :

∫
�

qdx =0
}

.

The spaces L2(�)m,m=1,2,4 are endowed with the L2-scalar product and L2-norm denoted
by (·, ·) and |·|. The spaces H 1

0 (�) and X are equipped with the scalar product and norm

((u, v))= (∇u,∇v), ‖u‖= (∇u,∇u)1/2.

As mentioned above, we need a further assumption on �:
(A1) Assume that � is regular so that the unique solution (v, q) ∈ (X,M) of the steady

Stokes problem

−�v +∇q =g, div v =0 in �, v|∂� =0,

for a prescribed g ∈Y exists and satisfies

‖v‖2 +‖q‖1 ≤C0|g|,

where C0 >0 is a constant depending on � and ‖·‖i denotes the usual norm of the Sobolev
space Hi(�) or Hi(�)2 for i =1,2.
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We also introduce the following Laplace operator

Au=−�u, ∀u∈D(A)=H 2(�)2 ∩X,

and the bilinear operator

B(u, v)= (u ·∇)v + 1
2
(div u)v, ∀u, v ∈X,

Moreover, we define the continuous bilinear forms a(·, ·) and d(·, ·) on X × X and X × M,
respectively, by

a(u, v)=ν((u, v)), ∀u, v ∈X, d(v, q)=−(v,∇q)= (q,div v), ∀v ∈X, q ∈M,

and a generalized bilinear form on (X,M)× (X,M) by

B((u,p); (v, q))=a(u, v)−d(v,p)+d(u, q),

and a trilinear form on X ×X ×X by

b(u, v,w)=〈B(u, v),w〉X′×X = ((u ·∇)v,w)+ 1
2
((div u)v,w)

= 1
2
((u ·∇)v,w)− 1

2
((u ·∇)w, v), ∀u, v,w ∈X.

We remark that the validity of assumption (A1) is known (see [11,12]) if ∂� is of C2, or
if � is a two-dimensional convex polygon. From assumption (A1), it is easily shown [11] that

|v|≤γ0‖v‖, ‖v‖≤γ0|PAv|, ‖v‖2 ≤γ1|PAv|, (2.2)

where P is the L2-orthonormal projection of Y onto the space {v∈L2(�)2 :divv=0 in � and
v·n|∂� =0}, and γ0, γ1, . . . are positive constants depending only on �.

It is easy to verify that B and b satisfy the following important properties (see [1,4,6,11,
13]): 



ν‖u‖2 =B((u,p); (u,p)),

|B((u,p); (v, q))|≤γ2(‖u‖+ |p|)(‖v‖+ |q|),

α0(‖u‖+ |p|)≤ sup
(v,q)∈(X,M)

B((u,p); (v, q))

‖v‖+ |q|

(2.3)

hold for all (u,p), (v, q)∈ (X,M) and constants γ2 >0 and α0 >0,

b(u, v,w)=−b(u,w, v), (2.4)

|b(u, v,w)|≤ 1
2
c0|u|1/2‖u‖1/2(‖v‖ |w|1/2‖w‖1/2 +|v|1/2‖v‖1/2‖w‖), (2.5)

for all u, v,w ∈X and

|b(u, v,w)|+ |b(v, u,w)|+ |b(w,u, v)|≤ c1‖u‖|Av||w|, (2.6)

for all u ∈ X,v ∈ D(A),w ∈ Y , where c0, c1, . . . , are positive constants depending on the
domain �.

Under the above notations, the variational formulation of the problem (2.1) reads as fol-
lows: find (u,p)∈ (X,M) such that for all (v, q)∈ (X,M):

B((u,p); (v, q))+b(u,u, v)= (f, v). (2.7)

The following existence and uniqueness results are classical (see [1, Chapter IV] and [14,
Chapter II]).
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Theorem 2.1. Assume that ν and f ∈Y satisfy the following uniqueness condition:

1− c0γ
2
0

ν2
|f |>0. (2.8)

Then the problem (2.7) admits a unique solution (u,p)∈ (D(A)∩X,H 1(�)∩M) such that

‖u‖≤ γ0

ν
|f |, |Au|+‖p‖1 ≤ c, |f |, (2.9)

where γ0 and c0 are defined in (2.2) and (2.5), respectively.

3. Stabilized finite-element approximation

In this section we apply the stabilized finite-element method developed for the Stokes equa-
tions to consider the numerical solution of the two-dimensional stationary incompressible
Navier-Stokes equations (2.1). Let h>0 be a real positive parameter. The finite-element sub-
space (Xh,Mh) of (X,M) is characterized by τh = τh(�), a partitioning of �̄ into triangles or
quadrilaterals, assumed to be regular in the usual sense (see [1,4,6,15]), i.e., for some σ and
ω with σ >1 and 0<ω<1,

hK ≤σρK ∀K ∈ τh, (3.1)

| cos θiK |≤ω, i =1,2,3,4, ∀K ∈ τh, (3.2)

where hK is the diameter of element K, ρK is the diameter of the inscribed circle of element
K, and θiK are the angles of K in the case of a quadrilateral partitioning. The mesh param-
eter h is given by h = max{hK}, and the set of all interelement boundaries will be denoted
by �h.

The finite-element subspaces of interest in this paper are defined by setting

R1(K)=
{

P1(K) if K is triangular,

Q1(K) if K is quadrilateral,
(3.3)

giving the continuous piecewise (bi)linear velocity subspace

Xh ={v ∈X : vi |K ∈R1(K), i =1,2, ∀K ∈ τh},

and the piecewise constant pressure subspace

Mh ={q ∈M : q|K ∈P0(K), ∀K ∈ τh}.

Note that neither of these methods are stable in the standard Babuška-Brezzi sense; P1 −
P0 triangle “locks” on regular grids (since there are more discrete incompressibility con-
straints than velocity degrees of freedom), and the Q1 −P0 quadrilateral is the most infamous
example of an unstable mixed method, as elucidated by Sani et al. [16].

With the above choices of the velocity-pressure finite-element spaces (Xh,Mh)⊂ (X,M), a
globally stabilized discrete formulation of the Navier-Stokes problem (2.7) can be defined as
follows.

Definition 3.1. Globally stabilized formulation: find (uh,ph)∈ (Xh,Mh) such that for all (v, q)∈
(Xh,Mh):

Bh((uh,ph); (v, q))+b(uh, uh, v)= (f, v), (3.4)
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where

Bh((u,p); (v, q))=B((u,p); (v, q))+β Ch(p, q), ∀(u,p), (v, q)∈ (X,M)

Ch(p, q)=
∑
e∈�h

he

∫
e

[p]e[q]eds, ∀p,q ∈M,

and [·]e is the jump operator across e∈�h, and β >0 is the global stabilization parameter [17].

In order to define a locally stabilized formulation of the Navier-Stokes problem, we intro-
duce a macroelement partitioning �h as follows: Given any subdivision τh, a macroelement
partitioning �h may be defined such that each macroelement K is a connected set of adjoin-
ing elements from τh. Every element K must lie in exactly one macroelement, which implies
that macroelements do not overlap. For each K, the set of interelement edges, which are
strictly in the interior of K, will be denoted by �K, and the length of an edge e ∈ �K is
denoted by he.

With these additional definitions a locally stabilized formulation of the Navier-Stokes
problem (2.7) can be stated as follows.

Definition 3.2. Locally stabilized formulation: find (uh,ph)∈ (Xh,Mh),

such that for all (v, q)∈ (Xh,Mh)

Bh((uh,ph); (v, q))+b(uh, uh, v)= (f, v), (3.5)

where

Ch(p, q)=
∑

K∈�h

∑
e∈�K

he

∫
e

[p]e[q]eds, ∀p,q ∈M,

[·]e is the jump operator across e∈�K and β >0 is the local stabilization parameter.

A general framework for analyzing the locally stabilized formulation (3.5) can be devel-
oped using the notion of equivalence class of macroelements. As in Stenberg [3], each equiv-
alence class, denoted by EK̂, contains macroelements which are topologically equivalent to a
reference macroelement K̂. To illustrate the idea, two practical examples of locally stabilized
mixed approximations are given below.

Example 3.1. The first example is the standard Q1 −P0 approximation pair. A locally stabi-
lized formulation (3.5) can be constructed in this case, if τh is such that the elements K can
be grouped into 2×2 macroelements K={K1, K2, K3, K4}, with the reference macroelement

K̂={K̂1, K̂2, K̂3, K̂4},
and arbitrary K∈�h as illustrated in Figure 1.

An obvious way of constructing such a partitioning in practice is to form the grid τh by
uniformly refining a coarse grid �h, for example, by joining the mid-edge points.

Example 3.2. The triangular P1 − P0 approximation pair can similarly be established if the
partitioning τh is constructed such that the elements can be grouped into disjoint macroel-
ements, all consisting of four elements as illustrated in Figure 2.

For the above finite-element spaces Xh and Mh, it is well-known that the following approx-
imation properties

|v − Ihv|+h‖v − Ihv‖≤ c3h
2|Av|, ∀v ∈D(A), (3.6)

|q −Jhq|≤ c3h‖q‖1, ∀q ∈H 1(�)∩M, (3.7)
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Figure 1. Reference and arbitrary (Q1 −P0) macroelements.

Figure 2. Reference and arbitrary (P1 −P0) macroelements.

and the inverse inequality

‖vh‖≤ c3h
−1|vh|, ∀vh ∈Xh, (3.8)

hold (see [13], [15, Chapter III] and [1, Chapter III]), where Ih :D(A)→Xh is the interpolation
operator and Jh :H 1(�)∩M→Mh is the L2-orthogonal projection.

The following stability results of these mixed methods for the macroelement partitioning
defined above were formally established by Kay and Silvester [6] and Kechkar and Silvester [4].

Theorem 3.3. Given a stabilization parameter β ≥β0 > 0, suppose that every macroelement K∈
�h belongs to one of the equivalence classes EK̂, and that the following macroelement connec-
tivity condition is valid: for any two neighboring macroelements K1 and K2 with

∫
K1∩K2

ds =0
there exists v ∈Xh such that

suppv ⊂K1 ∪K2 and

∫
K1∩K2

v ·nd s =0. (3.9)

Then,

|Bh((u,p); (v, q))‖≤γ3(‖u‖+ |p|)(‖v‖+ |q|), ∀(u,p), (v, q)∈ (X,M), (3.10)

α(‖uh‖+ |ph|)≤ sup
(v,q)∈(Xh,Mh)

Bh((uh,ph); (v, q))

‖v‖+ |q| , ∀(uh,ph)∈ (Xh,Mh), (3.11)

|Ch(p −Jhp, qh)|≤ c4h‖p‖1|qh|, Ch(p, qh)=0, ∀p ∈H 1(�)∩M,qh ∈Mh, (3.12)

where α >0, γ3 >0 are two constants independent of h and β, and β0 is any fixed positive con-
stant and n is the outnormal vector.

Throughout the article we shall assume that β ≥β0.

Theorem 3.4. Under the assumptions of Theorem 2.1 and Theorem 3.3, the problem (3.5) admits
a unique solution (uh,ph)∈ (Xh,Mh) satisfying

‖uh‖≤ γ0

ν
|f |, |ph|≤α−1

(
c0ν

−2γ 3
0 |f |2 +γ0|f |

)
. (3.13)
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Proof. Let the Hilbert space Hh = (Xh,Mh) be supplied with the scalar product and norm:

((v, q); (w, r))Hh
= ((v,w))+ (q, r), ‖(v, q)‖2

Hh
=‖v‖2 +|q|2,

and Kh be a non-void, convex and compact subset of Hh defined by

Kh =
{
(v, q)∈Hh : ‖v‖≤ γ0

ν
|f |, |q|≤ c0γ

3
0

αν2
|f |2 + γ0

α
|f |
}
.

We now define a continuous mapping from Kh into Hh as follows: Given (v̄, q̄) ∈ Kh find
(v, q)=�(v̄, q̄) such that for all (w, r)∈Hh

Bh((v, q); (w, r))+b(v̄, v,w)= (f,w). (3.14)

Taking (w, r)= (v, q) in (3.14) and using (2.2–2.5) and (3.11–3.12), we obtain

ν‖v‖2 ≤γ0|f |‖v‖,
α(‖v‖+ |q|)≤γ0|f |+ c0γ0‖v̄‖‖v‖≤γ0|f |+ c0ν

−2γ 3
0 |f |2,

which implies �(v̄, q̄)= (v, q)∈Kh. By the fixed-point theorem (see [1]), the mapping �(v̄, q̄)

has at least a fixed point (uh,ph)∈Kh, namely, (uh,ph)∈Kh is a stabilized finite-element solu-
tion of problem (3.5).

Next, we shall prove that problem (3.5) has only one solution (uh,ph). In fact, if (vh, qh)

also satisfies formulation (3.5), then for all (w, r)∈ (Xh,Mh)

Bh((uh −vh,ph −qh); (w, r))=b(vh −uh, uh,w)+b(vh, vh −uh,w). (3.15)

Taking (w, r)= (uh −vh,ph −qh) in (3.15) and using (2.2) and (2.4–2.5), we have

ν‖uh −vh‖2 ≤ c0γ0‖uh‖‖uh −vh‖2 ≤ c0
γ 2

0

ν
|f |‖uh −vh‖2,

which together with the fact

ν − c0
γ 2

0

ν
|f |=ν

(
1− c0

γ 2
0

ν2
|f |
)

>0,

gives uh = vh. Using again (3.15), (3.11) and (2.5), we obtain α|ph − qh| ≤ 0, namely
ph =qh.

4. Error estimates

In order to derive error estimates of the stabilized finite-element solution (uh,ph), we also
need the Galerkin projection (Rh,Qh) : (X,M)→(Xh,Mh) defined by

Bh((Rh(v, q)−v,Qh(v, q)−q)); (vh, qh))=0, ∀(vh, qh)∈ (Xh,Mh), (4.1)

for each (v, q) ∈ (X,M). Note that, due to Theorem 3.3, (Rh,Qh) is well defined. By using
an exact similar argument to the one used by Layton and Tobiska in [18], we may obtain the
following approximation properties.
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Lemma 4.1. Under the assumptions of Theorem 3.3, the projection (Rh,Qh) satisfies

|v −Rh(v, q)|+h‖v −Rh(v, q)‖+h|q −Qh(v, q)|≤ c5h(‖v‖+ |q|), (4.2)

for all (v, q)∈ (X,M) and

|v −Rh(v, q)|+h‖v −Rh(v, q)‖+h|q −Qh(v, q)|≤ c5h
2(|Av|+‖q‖1), (4.3)

for all (v, q)∈ (D(A),H 1(�)∩M).

Proof. The stability of the projection follows simply by Theorem 3.3, namely

‖Rh(v, q)‖+ |Qh(v, q)|≤α−1 sup
(vh,qh)∈(Xh,Mh)

Bh((v, q); (vh, qh))

‖vh‖+ |qh|
≤α−1γ3(‖v‖+ |q|), ∀(v, q)∈ (X,M). (4.4)

Now the triangle inequality gives

‖v −Rh(v, q)‖+ |q −Qh(v, q)|≤ (1+α−1γ3)(‖v‖+ |q|), ∀(v, q)∈ (X,M). (4.5)

Next, we introduce the dual problem: find (�,�)∈ (X,M) such that

Bh((�,�); (w, r))= (v −Rh(v, q),w), ∀(w, r)∈ (X,M).

Now, setting w=v−Rh(v, q), r =q −Qh(v, q) and using the projection property, the regular-
ity assumption (A1) and (3.6–3.7), we have, for (�h,�h)= (Ih�,Jh�)∈ (Xh,Mh),

|v −Rh(v, q)|2 =Bh((� −�h,�−�h); (v −Rh(v, q), q −Qh(v, q)))

≤C(‖� −�h‖+ |�−�h|)(‖v −Rh(v, q)‖+ |q −Qh(v, q)|)
≤Ch(‖v −Rh(v, q)‖+ |q −Qh(v, q))(‖�‖2 +‖�‖1)

≤Ch(‖v −Rh(v, q)‖+ |q −Qh(v, q)|)|v −Rh(v, q)|, (4.6)

where C >0 is a general constant depending on the data (�, ν, β). Combining (4.5) and (4.6)
gives (4.2).

Let (v, q) ∈ (D(A),H 1(�) ∩ M). Then, using the standard interpolation (Ihv, Jhp) ∈
(Xh,Mh), and Theorem 3.3, we have

‖Ihv −Rh(v, q)‖+ |Jhq −Qh(v, q)| ≤ α−1 sup
(vh,qh)∈(Xh,Mh)

Bh((Ihv −v, Jhq −q); (vh, qh))

‖vh‖+ |qh| .

Thus the triangle inequality and approximate properties (3.9–3.10) give

‖v −Rh(v, q)‖+ |q −Qh(v, q)|≤Ch(|Av|+‖q‖1). (4.7)

It now follows from (4.6) and (4.7) that

|v −Rh(v, q)|≤Ch2(|Av|+‖q‖1). (4.8)

Thus, (4.7) and (4.8) imply (4.3).

Next, we will derive the following error estimates of the finite-element solution (uh,ph)

defined in Section 3.
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Theorem 4.2. Assume that the assumptions of Theorem 2.1 and Theorem 3.3 hold. Then the sta-
bilized finite-element solution (uh,ph) satisfies the error estimates:

|u−uh|+h(‖u−uh‖+ |p −ph|)≤ ch2, (4.9)

where c>0 is a general constant depending on the data (�, ν, β0, f ).

Proof. Since Ch(p, qh)=0,∀p∈H 1(�)∩M,qh ∈Mh, we derive from (2.7) and (3.5) that for all
(v, q)∈ (Xh,Mh)

Bh((eh, ηh); (v, q))+b(u−Rh(u,p)+ eh, u, v)+b(uh, u−Rh(u,p)+ eh, v)=0, (4.10)

where eh = Rh(u,p) − uh and ηh = Qh(u,p) − ph. Taking (v, q) = (eh, ηh) in (4.10) and using
(2.4), we arrive at

ν‖eh‖2 +β0Ch(ηh, ηh)+b(eh, u, eh)

≤|b(u−Rh(u,p), u, eh)|+ |b(uh, u−Rh(u,p), eh)|. (4.11)

We find from (2.5), (2.9), (3.13) and (4.3) that

ν‖eh‖2 −|b(eh, u, eh)|≥ν‖eh‖2 − c0γ0‖u‖‖eh‖2 ≥ν
(

1− c0γ
2
0 |f |ν−2

)
‖eh‖2, (4.12)

|b(uh, u−Rh(u,p), eh)|+ |b(u−Rh(u,p), u, eh)|
≤ c0γ0(‖u‖+‖uh‖)‖eh‖‖u−Rh(u,p)‖≤ ch‖eh‖. (4.13)

Combining (4.11) with (4.12–4.13) yields

‖eh‖≤ ch. (4.14)

Moreover, by using (2.5–2.6), (2.9), (4.3) and (4.14), we have

|b(uh, u−Rh(u,p), eh)|+ |b(u−Rh(u,p), u, eh)|
≤ |b(u,u−Rh(u,p), eh)|+ |b(u−Rh(u,p), u, eh)|

+|b(u−Rh(u,p), u−Rh(u,p), eh)|+ |b(eh, u−Rh(u,p), eh)|
≤ c1|Au||u−Rh(u,p)|‖eh‖

+ c0γ0(‖u−Rh(u,p)‖+‖eh‖)‖u−Rh(u,p)‖‖eh‖≤ ch2‖eh‖. (4.15)

Combining (4.11–4.12) with (4.15) gives

‖eh‖≤ ch2, (4.16)

Moreover, one finds from (4.3), (4.16) and (2.9) that

|u−uh|≤ |eh|+ |u−Rh(u,p)|≤γ0‖eh‖+ c5h
2(|Au|+‖p‖1)≤ ch2, (4.17)

‖u−uh‖≤‖eh‖+‖u−Rh(u,p)‖≤ ch2 + c5h(|Au|+‖p‖1)≤ ch. (4.18)

Using again (3.11), (4.10), (2.9) and (3.13), we obtain

|ηh|≤α−1c(‖u‖+‖uh‖)‖u−uh‖≤ c‖u−uh‖. (4.19)

It follows from (4.3), (4.18–4.19) and (2.9) that

|p −ph|≤ |p −Qh(u,p)|+ |ηh|≤ ch(|Au|+‖p‖1)+ c‖u−uh‖≤ ch. (4.20)

Combining (4.17–4.18) with (4.20) yields (4.9).
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Table 1. Numerical results of the stabilized finite-element method.

h CPU(s) ‖u−uh‖
‖u‖

|u−uh|
|u|

|p−ph|
|p|

1/16 2 0·1349377549 0·05282056 0·0890762051
1/32 56 0·0674981988 0·04425722 0·0442804064
1/64 440 0·036532981 0·028694634 0·0170028269

5. Numerical Examples

In this section we assess the performance of the stabilized finite-element method described in
Section 3. We consider a unit-square domain with a driven-cavity flow solution, which is a
very popular problem in testing various numerical method. The graphs of the flow obtained
by finite-element method are documented in [19] and [20]. In this paper, we set that the exact
solution is given by

u(x, y)= (u1(x, y), u2(x, y)), p(x, y)=10(2x −1)(2y −1),

u1(x, y)=10x2(x −1)2y(y −1)(2y −1), u2(x, y)=−10x(x −1)(2x −1)y2(y −1)2,

with ν =0.005 and f is determined by (2.1).
The first issue to be considered here is the stabilized finite-element method being stable

with respect to the stabilization parameter β. We use the Q1 −P0 quadrilateral element with
h= 1

16 , h= 1
32 , h= 1

64 and plot the relative velocity error eh = ‖u−uh‖
‖u‖ and pressure error ηh =

|p−ph|
|p| as β changing in Figures 3 and 4, respectively.

Next, we provide the convergence accuracy of the stabilized finite-element method with
h = 1

16 and h = 1
32 and h = 1

64 when the best parameter value β = 9·18 is used to solve the
flow problem on a uniformly refined sequence of grids in Table 1. This method clearly shows
the anticipated first-order convergence rate as h→0.

A practical problem description is shown in Figures 5 and 6. The results are presented
graphically in Figures 7–10 for β =10−4, β =0·1, β =9·18 and β =10,000, respectively.
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Figure 5. Driven cavity flow.
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Figure 6. Driven cavity flow: (a) velocity vectors and (b) pressure contours.

The Figures 7–10 show that there exists a threshold for β such that the results are good
as β ≥9·18, but the results are extremely wrong as β →0.

6. Conclusions

In this paper, we have provided a theoretical analysis of the stabilized finite-element method
for the two-dimensional stationary Navier-Stokes equations. The analysis is a extension of the
work of Braess [9], Kechkar and Silvester [4,5], Kay and Silvester [6], Norburn and Silvester
[7] and Pitkäranta and Saarinen [10] for solving the stationary Stokes equations. The discreti-
zation is based on the finite-element space pair (Xh,Mh) for the approximation of the velocity
and the pressure, constructed by using the Q1 −P0 quadrilateral element or the P1 −P0 trian-
gular element and some local stabilized bilinear form βCh(ph, q) established on the macroel-
ements which satisfy the macroelement connectivity condition; while the above finite-element
space pair (Xh,Mh) without introducing the above stabilized bilinear form can not be used
to solve the two-dimensional stationary Navier-Stokes equations.

For the stabilized finite-element solution (uh,ph) we have established the existence, sta-
bility and the optimal error estimate. Finally, we have presented some numerical tests which
show that the stabilized finite-element method is stable and efficient numerically for solving
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Figure 7. Driven cavity flow β =10−4: (a) velocity vectors and (b) pressure contours.
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Figure 8. Driven cavity flow β =0.1: (a) velocity vectors and (b) pressure contours.
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Figure 9. Driven cavity flow β =9·18: (a) velocity vectors and (b) pressure contours.

the two-dimensional stationary Navier-Stokes equations; therefore, it is suitable to solve prac-
tical engineering problems arising in fluid dynamics. Furthermore, the method helps to solve
non-stationary two-dimensional or three-dimensional Navier-Stokes equations which will be
discussed in our further work.
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Figure 10. Driven cavity flow β =10,000: (a) velocity vectors and (b) pressure contours.
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